TESCO METERING

Practical Use of Vectors in Electric Metering

Prepared by Perry Lawton, TESCO
TESCO Metering

North Carolina Meter School
Advanced
Tuesday, June 11, 2024
8:45 AM

The most basic statement of metering:

Watts $=$ Voltage \times Current \times Power Factor Mathematically:

$$
\text { Watts }=V \times I \times \cos \theta
$$

What is a Vector?

A measurement that takes two numbers to represent.
BOTH a magnitude (size) and direction
tesco metering

Vectors or Phasors are...

a Symbolic Representation of the relationship of the voltage and current

- Vectors \& Vector Diagrams
- SIMPLE. Used to Represent Electrical Quantities.
- QUICK. Saves time.
- Vastly more effective
- Also referred to as "Phasors"

Representing Voltage(E) \& Current (I) with Lines

- Vectors all have MAGNITUDE and DIRECTION
- Line length can represent MAGNITUDE.
- Line with arrowhead in a given direction indicates that quantity's relationship to any other quantity being represented.
- DIRECTION: Angles between lines take on significance. They represent time (shown in degrees instead of seconds).

Drawing the Phasor

TESCO METERING

General Guidelines

- Complete circle (360 Degrees) equal one cycle of the frequency displayed.
- One component (Usually Phase A voltage) becomes the reference and is placed at zero degrees.
- Use "open" arrowhead on voltage line(s).
- Use "closed" (or filled in) arrowhead on current line(s).
- Label all voltages and currents by phase.
- Indicate Phase Rotation (counter-clockwise assumed if not noted).

"Time" in Degrees

tescometering.com
1 Element

Watthour Metering

- Watthour meter theory review:
- If we apply "V" volts and "I" amps to a meter, and the phase angle between the voltage and current is some angle θ, the meter speed will be proportional to:

Watts $=V \times I \times \cos \theta$

VECTORIALLY

Expected Meter Phasors

(at Power Factor $=1, \mathrm{ABC}$ Phase Sequence)

2 wire, 1φ

3 wire, 1φ

$11 / 2$ Element

1 Element

Placing Coils in Order

TESCO METERING

(Changing Coil order changes Sequence)

- A phasor diagram is a method of expressing the magnitudes and time relationships (or phase angle relationships) between two or more sinusoidal quantities of the same frequency.
- Each alternating quantity having the same frequency can be represented on the same diagram by additional lines. Their time relationship will determine the angle between the lines.
- The phasor diagram is a "snap-shot" of the set of lines at an instant in time. The instant is generally chosen to be the time at which the voltage passes through zero in the positive direction. If there is more than one voltage, the instant at which phase A voltage passes through zero is chosen.

Representing Polyphase V \& I

Time Domain Representation

Representing E \& / with Lines

- Line length can represent MAGNITUDE.
- Line with arrowhead in a given direction indicates that quantity's relationship to any other quantity being represented.
- Angles between lines take on significance. They represent time (shown in degrees instead of seconds).

Developing the Phasor Drawing

General Guidelines

- Complete circle (360 Degrees) equal one cycle of the frequency displayed.
- One component (Usually Phase A voltage) becomes the reference and is placed at zero degrees.
- Use "open" arrowhead on voltage line(s).
- Use "closed" (or filled in) arrowhead on current line(s).
- Label all voltages and currents by phase.
- Indicate Phase Rotation (counter-clockwise assumed if not noted).

Analyzing the Phasor Picture

- Both voltage \& current are required in each meter element (stator) for that element to have an effect on registration.
- Time relationship (degrees separation) between voltage \& current acting together on each element will determine that element's effect.
- Only angles of less than 90 Degrees between the current and voltage on any meter element will cause positive watthour registration.

The Phasor Diagram

Service \& Meter Phasors

Service Phasors

Meter Phasors
2 ½ Element

Phase Rotation \& Site Measurements

Site Measurements

Phase	Voltage	Voltage Phase	Current	Current Phase	Probe Current	Probe Phase
A	113.605	0.000°	2.901	14.345°	578.355	14.45°
B	114.364	120.147°	3.002	136.931°	599.459	137.140°
C	113.611	240.312°	2.864	256.188°	570.920	256.198°

Secondary Phasor

Primary Phasor

Power

Phase	Watts	VA	VAR	Voltage THD	Current THD	Power Factor	CT Ratio
A	0.354	1.464	0.360	0.016	0.075	0.966	$996.98: 5$
B	1.456	1.525	0.438	0.016	0.073	0.955	$998.58: 5$
C	1.387	1.445	0.393	0.016	0.075	0.959	$996.57: 5$

load Caused Phase Angles

Effect of Power Factor

- We represent energy as: Energy $=E \times I \times \cos \theta \times t$
- θ is the angle between V and I
- Cos θ is also known as Power Factor
- What θ values give with these lagging Power Factors?

Three Wire Delta Source

tesco metering

With pure resistance balanced three-phase load, the current in each supply transformer is in phase with the voltage across each transformer.

Drawing Source Phasors

TESCO METERING

Phasor diagram for delta-connected three-phase system with three-phase delta-connected resistance load

Phasors for Source \& Meter

tesco metering

Phase Sequence CBA

tesco metering

Common Distribution Circuits

TESCO METERING

Three-Wire
Single Phase

Four-Wire
Three Phase Delta

Four-Wire
Three Phase
Wye

3 Element Expected Meter Phasors

(at Power Factor =1, aBC Phase Sequence)

Balanced
Polyphase Load

Single phase Load
Connected A to B

Balanced
Polyphase Load

2 Element Expected Meter Phasors

TESCO METERING
(Balanced load at Power Factor $=1$, ABC Phase Sequence)

1९ EXPECTED Meter Phasors

TESCO METERING
(BALANCED LOAD AT POWER FACTOR $=1$, ABC PHASE SEQUENCE)

1 Element

Expected Meter Phasors

(AT POWER FACTOR $=1$, ABC PHASE SEQUENCE)

Expected Meter Phasors

TESCO METERING
(AT POWER FACTOR = 1, ABC PHASE SEQUENCE)

3 wire, delta

2 Element

Expected Meter Phasors

(AT POWER FACTOR = 1, ABC PHASE SEQUENCE)

1 Element

Let's Talk about Why We Need to Understand Vectors.

Vector Addition

Addition of vectors can be expressed by a diagram. Placing the vectors end to end, the vector from the start of the first vector to
 the end of the second vector is the sum of the vectors. One way to think of this is that we start at the beginning of the first vector, travel along that vector to its end, and then travel from the start of the second vector to its end. An arrow constructed between the starting and ending points defines a new vector, which is the sum of the original vectors. Algebraically, this is equivalent to adding corresponding terms of the two vectors:

$$
\mathbf{a}+\mathbf{b}=\left[\begin{array}{l}
a_{x} \\
a_{y}
\end{array}\right]+\left[\begin{array}{l}
b_{x} \\
b_{y}
\end{array}\right]=\left[\begin{array}{l}
a_{x}+b_{x} \\
a_{y}+b_{y}
\end{array}\right]
$$

We can think of this as again making a trip from the start of the first vector to the end of the second vector, but this time traveling first horizontally the distance $a_{x}+b_{x}$ and then vertically the distance $a_{y}+b_{y}$.

Vector Subtraction

Subtraction of vectors can be shown in diagram form by placing the starting points of the two vectors together, and then constructing an arrow from the head of the second vector in the subtraction to the head of the first vector. Algebraically, we subtract corresponding terms:

$$
\mathbf{a}-\mathbf{b}=\left[\begin{array}{l}
a_{x} \\
a_{y}
\end{array}\right]-\left[\begin{array}{l}
b_{x} \\
b_{y}
\end{array}\right]=\left[\begin{array}{l}
a_{x}-b_{x} \\
a_{y}-b_{y}
\end{array}\right] .
$$

*Not the "Q" of Q-hour metering

*Not the "Q" of Q-hour metering

- To calculate Apparent power (U), first add the components for the phases together,

TESCO METERING

- To calculate Apparent power (U), first add the components for the phases together,

How is 3φ Apparent Power calculated?

- To calculate Apparent power (U), first add the components for the phases together, then solve for U.

$$
\begin{aligned}
& U_{3 \varphi}=\sqrt{\left(P_{A}+P_{B}+P_{C}\right)^{2}+\left(Q_{A}+Q_{B}+Q_{C}\right)^{2}+\left(D_{A}+D_{B}+D_{C}\right)^{2}} \\
& S=\sqrt{\left(\mathbf{P}_{A}+P_{B}+P_{C}\right)^{2}+\left(Q_{A}+Q_{B}+Q_{C}\right)^{2}} \\
& U_{(\text {arith })=U_{A}+U_{B}+U_{C}}
\end{aligned}
$$

Apparent Power vs. Arithmetic Apparent Power

tesco metering

- To calculate Apparent power (U), first add the components for the phases together, then solve for U.

$$
U_{3 \varphi}=\sqrt{\left(P_{A}+P_{B}+P_{C}\right)^{2}+\left(Q_{A}+Q_{B}+Q_{C}\right)^{2}+\left(D_{A}+D_{B}+D_{C}\right)^{2}}
$$

- To calculate Arithmetic Apparent power, add the Apparent power magnitudes of the three individual phases.

$$
\bigcup_{\text {Anilmeicic }}=\bigcup_{A}+\bigcup_{B}+\bigcup_{C}
$$

All KVAs are not Created Equal

Power Calculations					
POWERS		Phase A	Phase B	Phase C	Total
Active	(P)	3626.4	2880.0	2833.0	9339.4
Reactive	(Q)	317.3	2146.0	2112.0	4575.3
Distortion	(D)	0.0	1102.6	1784.5	2887.1
Apparent	(U)	3640	3757	3959	
PHASOR	(S)	(VA) Total $=$	10,400		PF $=89.8$
APPARENT (U)	(VA)Total $=$	10,793		PF $=86.5$	
ARITH.	(Uarth)	(VA) Total $=$	11,356	PF $=82.2$	

Modern Reactive Metering

- Which "kVA" calculation method is correct?
- They all are "correct", by definition.
- Each utility needs to decide which value is appropriate for their own needs.
- Phasor Power is what results from calculations based on traditional kWh and kvarh meter readings, using a PhaseShifting Transformer.
- Apparent Power provides more complete picture of "cost of service", expected answers under all conditions.
- Arithmetic Apparent Power may provide unexpected results (low PF, high kVA) for asymmetrical or unbalanced conditions.

Phase "X" Formulae

TESCO METERING
RMS Potential, $\quad E_{X}=\sqrt{\sum_{h=1}^{m} E_{X h}^{2}}$
(Volts)
RMS Current, $\quad I_{X}=\sqrt{\sum_{h=1}^{H} I_{X h}^{2}}$
Apparent Power, $\quad U_{X}=E_{X} I_{X}$
(Amperes)

Active Power, $\quad P_{X}=\sum_{h=1}^{H} E_{X h} I_{X h} \cos \left(\alpha_{x h}-\beta_{X h}\right)$
Re active Power,

$$
\begin{equation*}
Q_{X}=\sum_{h=1}^{H} E_{X h} I_{X h} \sin \left(\alpha_{X h}-\beta_{X h}\right) \quad(k \mathrm{var}) \tag{kW}
\end{equation*}
$$

Distortion Power, $\quad D_{x}= \pm \sqrt{U_{x}^{2}-P_{x}^{2}-Q_{x}^{2}}$
Phasor Power, $\quad S_{x}=+\sqrt{P_{x}^{2}+Q_{x}^{2}}$
Fictitious Power, $\quad F_{x}=+\sqrt{U_{x}^{2}-P_{x}^{2}}$
Nonreactive Power, $\quad N_{x}=+\sqrt{U_{x}^{2}-Q_{x}^{2}}$
E_{xh} and I_{xh} are the RMS voltage and amperage of harmonic h . α_{xh} and β_{xh} are the phase angles of the voltage and current of harmonic h with respect to the reference time-frame. H is the highest harmonic ordinal.

Different Meters
tesco metering

Aclara kV2c Meter

Itron
Sentinel

Landis + Gyr S4e

Honeywell A3

Sensus Icon APX

Step 1: Draw Diagram for...

TESCO METERING

Power

Transformer

Phasor Construction

Step 2: Draw Diagram for...

Power
Transformer

Load

Step 2: Label points of Power Transformer

Phasor Construction

Power

Transformer

Draw line currents between power transformer and meter. Use arrows with closed points (\longrightarrow).
Assume all currents flow from transformer to load. Where necessary, draw power transformer coil currents and label with double subscript notation ($I_{B A}, I_{A C}$, etc.
Phasor Construction

Power

 Meter
Load

Transformer

The polarity mark (+) goes on the line side of all current coils except:
(a): For $2 \mathbf{1 / 2}$ stator Z-coil meters. The polarity " + " goes on the load side of the \mathbf{Z}-coil.
(b): For 3-wire, 1-phase meters and the 3-wire stator on the left side of a 4-wire delta meter, the " + " goes on the load side of the right hand coil of the single stator meter, and the "inside" coil of the left hand stator in the 4 -wire delta meter.

Step 4: Polarity of Current Coils (cont.)
TESCO METERING

Power

Meter
Load

Transformer

If line current enters the " + " end of a current coil, the coil current is assumed to be in phase with the line current. If, however, the current enters the unmarked end of the coil, the current is assumed to be 180° out of phase with the line current.

Phasor Construction

Step 5: Mark Polarity on all Voltage Coils

TESCO METERING

Power

Meter
Load
Transformer

The polarity mark (+) goes on the end of the voltage coil that connects to the " + " end of the current coil.

Phasor Construction

Power

Meter
Load
Transformer

Draw open ended arrows to represent voltage at the power transformer.
-Wye-connected: point away from the neutral.
-Delta-connected: tracing tail-to-head-to-tail, etc., around the delta following a counter-clockwise direction.
Phasor Construction

Step 7: Establish Voltage \& Current Relationships

TESCO METERING

Use Kirchoff's Laws to establish the needed relationships between voltages and currents at the power transformer.

Phasor Construction

Step 8: Complete the "Source" Phasors

Power Meter
 Load

Transformer

Complete the phasor diagram for the power transformer (source).

Phasor Construction

Step 8: Complete the "Source" Phasors

Power
 Meter
 Load

Transformer

Step 9: Construct Meter Voltage Phasors
tesco metering

Power
 Meter
 Load

Transformer

Draw the voltage phasors for the meter, using the tracing method.
Starting at the polarity end of the voltage coil, trace through the voltage coil, back through the source, and return to the polarity end of the voltage coil.
The direction of the METER phasor is the direction traveled through the source transformer.

Phasor Construction

Step 9: Construct Meter Voltage Phasors

Power Meter
 Load

Transformer

Phasor Construction

Step 10: Construct Meter Current Phasors

TESCO METERING

Power Meter
 Load

Transformer

Add meter current phasors by using the relationships developed in step 8, and observing the polarity marks of the current coils. Make sure all voltage and current phasors are labeled, and show the interactions between voltages and currents in the meter stators by connecting the appropriate phasors with elongated ellipses.

Phasor Construction

Step 10: Construct Meter Current Phasors

Power
 Meter
 Load

Transformer

Step 11: Write Equation for Meter Watts

Power Meter
 Load

Transformer

Show the expression for the Meter Watts.

Phasor Construction

Step 11: Write Equation for Meter Watts

TESCO METERING

Power Meter Load

Transformer

Assuming balanced
Show the expression for the Meter Watts.

MeterWatts $=V_{A} I_{A} \cos \left(30+\theta_{A}\right)+V_{C} I_{C} \cos \left(30-\boldsymbol{\theta}_{C}\right)$

$$
\begin{aligned}
& =V_{L L} I_{L} \cos (30+\theta)+V_{L L} I_{L} \cos (30-\theta) \\
& =V_{L L} I_{L}[(\cos 30 \cos \theta-\sin 30 \sin \theta)+(\cos 30 \cos \theta+\sin 30 \sin \theta)]
\end{aligned}
$$

$$
=V_{L L} I_{L}| |\left(\left.\frac{\sqrt{3}}{2} \cos \theta\right|^{[\mid}+\left.\left(\frac{\sqrt{3}}{2} \cos \theta\right)\right|^{)}\right]
$$

$$
=\sqrt{3} V_{L L} I_{L} \cos \theta
$$

Phasor Construction

Step 12: Write Equation for Load Watts

Power Meter
 Load

Transformer

Show the expression for the Delivered Watts, or Load Watts.

Phasor Construction

Step 12: Write Equation for Load Watts

TESCO METERING

Power Meter
 Load

Transformer

Show the expression for the Delivered Watts, or Load Watts.

For a balanced 3-phase load:

$$
\text { Load Watts }=\sqrt{3} V_{L L} I_{L} \cos (\theta)
$$

Phasor Construction

Step 13: Calculate "Percent Registration"

TESCO METERING

Power Meter
 Load

Transformer

Calculate the percent registration of the meter by dividing the Meter Watts by the Load Watts, then multiplying the result by 100%.

Step 13: Calculate "Percent Registration"

Power
 Meter
 Load

Transformer

Calculate the percent registration of the meter by dividing the Meter Watts Calculate the percent registration of the meter by dividing the Meter Watts
by the Load Watts, then multiplying the result by 100%.

Phasor Construction

$$
\begin{aligned}
& =\frac{\sqrt{3} V_{L L} I_{L} \cos \theta}{\sqrt{3} V_{L L} I_{L} \cos \theta} \times 100 \% \\
& =100 \%
\end{aligned}
$$

Questions and Discussion

Perry Lawton

Northeastern Regional Sales Manager perry.lawton@tescometering.com

TESCO Metering Bristol, PA
215.500.7511

This presentation can also be found under Meter Conferences and Schools on the TESCO website: tescometering.com

ISO 9001:2015 Certified Quality Company ISO 17025:2017 Accredited Laboratory

TESCO HOSPITALITY SUITE

You're invited...

We would like you to join us in the TESCO Hospitality Suite for networking and more discussions about metering. The discussion will not be exclusively metering. \qquad but we love metering and that is the most common topic.

TESCO Hospitality Suite - Brighton Tower

Monday and Tuesday 8:00 PM - 10:00 PM

We Hope you Can Join Us!

TESCO METERING

